alb
Acta Limnologica Brasiliensia
Acta Limnol. Bras.
2179-975X
Associação Brasileira de Limnologia
Resumo:
Objetivo
O objetivo deste estudo foi investigar o efeito da heterogeneidade do habitat na diversidade de cladóceros em escala local e regional. Nós testamos duas hipóteses: (i) a diversidade de habitat, dada pela quantidade de microhabitat, amenta a diversidade alfa de organismos que vivem nesses ambientes; (ii) a heterogeneidade de microhabitat, dada pela diferença de composição do microhabitat, aumenta a diversidade beta dos organismos que vivem nesses ambientes.
Métodos
Amostras de cladóceros e de macrófitas foram coletadas em seis áreas úmidas do Brasil Central, durante as estações seca e chuvosa, no Parque Nacional de Brasília (BNP) e no Campos de Instrução de Formosa (FIF).
Resultados
Em escala local (áreas úmidas), o número de morfoespécies de macrófitas mostrou um efeito positivo na diversidade alfa de cladóceros; a diferença de composição do microhabitat afetou positivamente a diversidade beta em três áreas úmidas estudadas. Em escala regional, o número de morfoespécies de macrófitas mostrou efeito positivo na diversidade alfa; a diversidade beta foi maior em BNP do que em FIF.
Conclusões
Nossos resultados indicam que a riqueza e dissimilaridade de espécies de macrófitas aquáticas aumentaram a diversidade alfa e beta de cladóceros em escala local e regional. Assim, a riqueza de cladóceros foi correlacionada ao número e a variabilidade de microhabitats em áreas úmidas.
1. Introduction
The role of macrophytes in structuring aquatic communities is an increasingly relevant question when concerning the factors that govern diversity in freshwater aquatic ecosystems. The aquatic macrophytes play an important role to invertebrates because provide complex interaction among abiotic and biotic which support the biodiversity, such as: structural complexity and heterogeneity of microhabitats (Pelicice et al., 2008; Thomaz et al., 2008); permanent habitat for some species (littoral species) while foraging area to others (planktonic species).
At the same time, macrophytes support the food to invertebrates because is the habitat of periphyton algae, support predatory interactions (Burks et al., 2002). In fact, the presence of macrophytes is related to patterns of distribution, foraging, ecomorphology and diversity of both vertebrates and invertebrates (Rennie & Jackson, 2005; Hornung & Foote, 2006; Agostinho et al., 2007; Hansen et al., 2011; Deosti et al., 2021; Espinosa-Rodríguez et al., 2021; Quirino et al., 2021).
Macrophytes are remarkably diverse, with many species exhibiting a variety of lifestyles and morphologies (Vieira et al., 2007; Padial et al., 2009; Hinojosa-Garro et al., 2010; Thomaz & Cunha, 2010; Lucena-Moya & Duggan, 2011). These characteristics also favor the formation of different microhabitats, which in turn lead to an increased spatial heterogeneity and a potential association with an increased diversity of aquatic invertebrates (Nogueira et al., 2003; Braghin et al., 2016).
Among such invertebrates, the microcrustaceans of the Superorder Cladocera stand out for the high number of species that associate with macrophytes, especially when compared to pelagic zone (Castilho-Noll et al., 2010; Forró et al., 2008; Gebrehiwot et al., 2017; Smirnov, 1992, 1996). Many studies evaluated the structure and aspects of cladoceran assemblages in macrophyte-dominated environments (e.g.,Whiteside & Harmsworth, 1967; Hann & Turner, 2000; Elmoor-Loureiro, 2007; Sousa et al., 2009). However, most of these studies did not evaluate any possible correlations between the number of macrophyte species and the diversity of these microcrustaceans.
The number of macrophyte species in multispecific bank might be more important than structural complexity of a monospecific bank compound by one macrophyte species, considered highly complex, for instance. This can occur because the biological diversity of macrophytes in multispecific banks, resulting mainly from competition and abiotic interactions, also supports many ecological interactions in those communities that use the macrophytes as microhabitats to realize at the least one step of their life cycle. The mechanism raised here suggests that heterogeneity given by multispecific banks goes beyond the structural complexity because increase the biological complexity, i.e. increase the chances for more ecological interactions to happen, resulting in higher biodiversity.
This highlights the gaps in the knowledge regarding cladoceran diversity and its association with the aquatic vegetation, even though these two components of the aquatic biota represent good models to test ecological hypotheses, including those related to the environmental heterogeneity theory. The wetlands of the Cerrado in central Brazil are excellent environments to evaluate the spatial heterogeneity provided by the aquatic vegetation and its effects on cladoceran diversity, because they are densely colonized by macrophytes and harbor diverse microcrustacean communities (Reid, 1984, 1987, 1993; Sousa & Elmoor-Loureiro, 2008).
We aimed to investigate the effect of habitat heterogeneity on diversity on a local and regional scale. The following hypotheses were evaluated: (i) the habitat diversity, given by quantity of microhabitat by richness of macrophytes, increases the alpha diversity of organisms that live in those environments; (ii) the habitat heterogeneity, given by compositional difference of microhabitat, increases the beta diversity of organisms that live in those environments.
2. Material and Methods
2.1. Study Area, sampling and identification of Cladocera
The study was performed in central Brazil, in two areas harboring unaltered Cerrado fragments. The Brasília National Park (BNP) and the Formosa Instruction Field (FIF). The BNP is located in the Federal District and is its largest Integral Protection Conservation Unit with 42,389 hectares. On this study, three wetland areas were sampled inside the BNP: Henrique pond (HE - 15º41’18”S 47º56’10”W), Exército pond (EX - 15º44’44,3”S 47º58’49,1”W) and Peito de Moça pond (PM - 15º45’05,8”S 48º01’33,2”W).
The FIF is an area administered by the Brazilian Army, located in the state of Goiás, border the Federal District to the east and the state of Minas Gerais to the South. The FIF comprises a large and well-preserved Cerrado fragment, and harbors many aquatic ecosystems such as lotic systems, lagoons and wetlands. In this study, we sampled the following natural wetlands inside the FIF: Cabocla I pond (CBI - 15º48’16,6”S 47º14’58,8”W), Cabocla II pond (CBII - 15º48’22,6”S 47º14’10,6”W) and Grande pond (GR - 15º49’37,3”S 4713’50,8”W). All the sampled wetlands are densely covered with macrophytes. Cladocerans were collected through a gradient of depth and using a plankton net dragged among aquatic vegetation; the experimental design and protocols for cladoceran sampling and identification follow Sousa et al. (2014).
2.2. Physical and chemical variables
We measured 11 physicochemical water parameters: temperature, pH, electrical conductivity, dissolved oxygen, turbidity, dissolved solids, suspended solids, total nitrogen, dissolved inorganic nitrogen, reactive soluble phosphorus, and total phosphorus. Measurements of temperature, pH, electrical conductivity and dissolved oxygen were taken in the field using specific probes. For all other variables, we collected 5L of water using a manual suction pump. The methods used for the remaining variables followed the Standard methods for examination of water and wastewater (APHA, 2005). Dissolved inorganic nitrogen corresponded to the sum of the amounts of nitrate (N-NO3-), nitrite (N-NO2-) and ammonium (N-NH4+).
2.3. Macrophyte sampling and identification
We collected macrophytes following the experimental design described in Sousa et al. (2014, p. 145):
[…] a transect was installed from the lowest depth of water table toward the center of the water body and sample points were chose based in changes in the depth or in macrophyte assemblage; in each sampling point, a perpendicular line up to 24 m was established for data collection.
Thus, were collected least two specimens of each macrophyte morphospecies observed within perpendicular line. All vegetal material collected was herborized following the usual procedure for terrestrial plants, except for submerged macrophytes, which were stored in 90% ethanol. We identified the plant material to the lowest possible taxonomic level, using specialized literature (Pott & Pott, 2000; Munhoz et al., 2011). Afterwards, we deposited them in the herbarium of the Universidade de Brasília. A list of the macrophytes encountered is found in Sousa (2012).
2.4. Statistical analyses
Species richness for both cladocerans and macrophytes for each wetland were compared using a sample-based rarefaction analysis. Our experimental design was realized in two scales: in the local scale the grain was in each wetland (HE, EX, PM, CBI, CBII, and GR) whereas in the regional scale the grain was in each area (BNP and FIF).
The effect of habitat heterogeneity on cladoceran alpha diversity was tested using a General Linear Model, where: cladoceran species richness was dependent variable; macrophyte species richness was independent variable; and, each scale was the variable conditioned. The homoscedasticity was assessed by visual inspection of residuals. Normality was tested with a shapiro-test of the residuals model and the linearity using the significance of linear coefficient. For this analysis, all data were log x+1 transformed and evaluated with a regression analysis.
The effect of the habitat heterogeneity on cladoceran beta diversity was tested using a Mantel Test with 999 randomizations. We estimated the habitat heterogeneity among sites computing the Jaccard dissimilarity matrix of the macrophyte composition. The cladoceran beta diversity was computed using the Jaccard dissimilarity matrix.
Moreover, on a regional scale, we also measured the variability of species composition of cladocerans for the wetlands in the BIP and FIF. To do so, the betadisper function of the Vegan package was used to check the observed dispersion homogeneity related to species composition. Following that, we performed a permutation test (999 randomizations) to evaluate if there are significant differences among the areas concerning dissimilarity (Anderson et al., 2006). All analysis was performed in the R environment using the vegan package.
3. Results
3.1. Physicochemical parameters
The Table 1 shows the results regarding the physicochemical water parameters. The sampled wetlands exhibit, on average, low levels of electrical conductivity and dissolved oxygen. The pH values found indicate slightly acidic waters, with values always below six. Regarding the nutrients, the studied areas exhibit low levels of nitrogen and phosphorus, on average.
Table 1
Mean, standard deviation and variation coefficient for the physicochemical water parameters in wetlands of the Brasília National Park and Formosa Instruction Field.
Wetland
HE
EX
PM
CBI
CBII
GR
(N=10)
(N=10)
(N=6)
(N=8)
(N=10)
(N=8)
Water temperature (ºC)
25.50±3.09 12.11%
24.34±1.78 7.30%
24.22±2.95 12.17%
24.81±1.06 4.28%
22.33±3.72 16.68%
27.11±4.42 16.30%
Electrical conductivity (µS cm-1)
4.93±2.05 41.60%
4.78±1.24 25.86%
7.75±2.87 36.89%
5.74±1.58 27.51%
5.07±0.95 18.78%
4.88±2.36 48.48%
Dissolved oxygen (mg L-1)
4.88±0.75 15.45%
5.51±0.99 17.89%
4.97±0.55 11.13%
4.73±0.82 17.25%
3.73±0.74 19.83%
4.79±0.90 18.73%
pH
5.11±0.21 4.08%
5.50±0.44 7.97%
5.57±0.41 7.52%
5.02±0.11 10.84%
5.39±0.27 5.07%
5.72±0.49 8.58%
Inorganic nitrogen (µg L-1)
96.27±48.74 50.63%
91.91±43.94 47.81%
87.15±25.39 29.13%
127.68±47.49 37.20%
174.88±87.18 49.85%
110.71±29.30 26.43%
Total nitrogen (µg L-1)
178.88±106.72 59.60%
197.40±108.57 54.85%
164.47±119.58 72.66%
123.88±56.73 45.80%
173.35±86.94 50.15%
117.35±32.72 27.88%
Soluble reactive phosphorus (µg L-1)
1.58±0.95 60.18%
5.53±10.13 183.5%
1.07±0.12 11.35%
4.03±2.58 64.04%
2.96±1.67 56.42%
2.99±1.94 65.06%
HE = Henrique Pond; EX = Exército Pond; PM = Peito de Moça Pond; CBI = Cabocla I Pond; CBII = Cabocla II Pond; GR = Grande Pond.
3.2. Local effect of the diversity of habitat on taxonomic diversity of Cladocera
The rarefaction analysis showed the highest cladoceran richness in CBII, followed by HE, GR, EX, CBI, and PM (Figure 1a) wetlands. The number of macrophytes varied between wetlands: the minimum was 14 morphospecies in CBII and the maximum 43 species (Figure 1b). Regardless of the wetland, the number of macrophyte shows the positive effect on alpha diversity (ANCOVA; coefficient = 0.816; p-value < 0.001; R2Adj = 0.76) (Figure 2). The compositional difference of the microhabitat positively affected the beta diversity of CBI, LE, and LH, while that negatively affected the beta diversity in PM (Table 2).
Figure 1
(a) Sample-based rarefaction analysis to cladoceran for the wetlands studied. (b) Sample-based rarefaction analysis to macrophytes for the wetlands studied.
Figure 2
Cladoceran species richness in relation to macrophyte species richness in local scale.
Table 2
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.
R-Mantel
p-value
CBI
0.39
0.024
CBII
0.08
0.321
EX
0.35
0.031
GR
0.05
0.372
HE
0.35
0.05
PM
-0.57
0.03
HE = Henrique Pond; EX = Exército Pond; PM = Peito de Moça Pond; CBI = Cabocla I Pond; CBII = Cabocla II Pond; GR = Grande Pond.
3.3. Regional effect of the habitat diversity on species richness
Regardless of the protected areas, the number of macrophyte shows the positive effect on alpha diversity (ANCOVA; coefficient = 0.463; p-value < 0.001; R2Adj = 0.36) (Figure 3). The compositional difference of the microhabitat in regional scale positively affected the beta diversity (Table 3). Beta diversity was higher in the BNP than in the FIF (F = 10.384; p = 0.002) (Figure 4).
Figure 3
Cladoceran species richness in relation to macrophyte species richness in regional scale. BNP = Brasília National Park; FIF = Formosa Instruction Field.
Table 3
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.
R-Mantel
p-value
BNP
0.20
0.007
FIF
0.16
0.019
BNP = Brasília National Park; FIF = Formosa Instruction Field.
Figure 4
Principal coordinate analysis of the centroid distance resulting from the betadisper function. BNP = Brasília National Park; FIF = Formosa Instruction Field.
4. Discussion
According to Fonseca et al. (2018), the wetlands studied should be considered poor in nutrients, thus, might be classified as oligotrophic environments. Such result is a pattern related to pristine water bodies in Brazilian Cerrado (Reid, 1984; Fonseca & Mendonça-Galvão, 2014). At the same time, the reduced concentration of nutrients in the studied wetlands seem to have not a negative effect on the diversity due high observed richness of algae, cyanobacteria, testate amoebae, macrophytes and microcrustaceans (Fonseca et al., 2018).
We recorded that the species richness and dissimilarity of aquatic macrophytes increased to alpha and beta diversity of cladocerans on the local and regional scales. We argue that the availability of microhabitats (macrophyte species richness) supports more ecological niches and, therefore, it favors more and different species. Moreover, the heterogeneity of microhabitats (higher macrophyte beta diversity) increased the cladoceran turnover, because the higher microhabitats variation also allows a higher number of different cladoceran species to share the same site. The habitat mosaic provided by aquatic macrophytes affects the species composition and distribution of aquatic invertebrate assemblages (Sakuma & Hanazato, 2002; Geralds & Boavida, 2004; Walseng et al., 2006; Castilho-Noll et al., 2010; Braghin et al., 2016; Kuczyńska-Kippen & Joniak, 2016). The macrophytes are a strong indicative of spatial heterogeneity and complexity because different species of macrophytes can be spatially arranged in a particular manner in each water body according to factors such as depth levels and the life-history aspects of the species considered (Gledhill et al., 2008; Kuczynska-Kippen, 2009).
Another attribute related to species as functional units is that not all individuals belonging to them exhibit the exact same morphological features, are in the same developmental stage or display the same health conditions, which grants these individuals different conditions and provides habitats with different resources (Cronk & Fennessy, 2001; Trochine et al., 2009). This can lead to a type of ecological relationship as those reported in the wetlands of our study, especially because cladocerans tend to be a dominant fauna in environments with presence of macrophytes (Braghin et al., 2016; Gebrehiwot et al., 2017).
Macrophytes increases ecological complexity through higher resource availability because it provides a range of surfaces for colonization by numerous organisms, including periphytic algae and closely related organisms, bacteria, ciliates, flagellates (Schwarzbold, 1990; Meerhoff et al., 2007; Buosi et al., 2011), which works as food resource to cladocerans. Macrophytes also are recognized to be the home of more dense and diverse zooplankton communities (Gebrehiwot et al., 2017) because they reduce the foraging activity of planktivorous fish (Thomaz et al., 2008) and serve as a refuge for zooplankton against predation (Burks et al., 2002). Altogether, such ecological features might be related to the high diversity of organisms found inhabiting macrophytes.
In the regional scale, we found positive association between cladoceran beta diversity and macrophyte dissimilarity suggesting that cladoceran beta diversity in the studied wetlands are the result of habitat differentiation provided by the aquatic vegetation. According to Shmida & Wilson (1985), one of the main determinants of species composition variability is habitat diversity. Our results support this statement, considering that aquatic macrophytes displayed a high relative importance for the dissimilarity of cladoceran species: the increase in the vegetation dissimilarity implies in an increase in habitat diversity and in the distribution of different ecological niches, generating a similar response for the phytophile fauna. In other words, the variability in cladoceran species composition followed the habitat structure modifications generated by the aquatic vegetation (Choi et al., 2014).
More recently, investigations have highlighted the importance of shallow wetlands (Scheffer et al., 2006; Gledhill et al., 2008), such as those from our study. Some studies indicate that these wetlands support a considerable portion of the aquatic biodiversity in the landscape scale (e.g.,Boix et al., 2008; Céréghino et al., 2008; Gebrehiwot et al., 2017), harboring a high level of species endemism and an elevated number of rare species when compared to other aquatic environments (Fonseca et al., 2018), such as large lakes. In this sense, the results brought here show an elevated diversity of cladoceran species sustained mainly by different environmental settings and corroborate with the necessity to conserve aquatic vegetation of littoral water bodies and wetlands.
In conclusion, we found that the number of macrophytes and compositional difference of the microhabitat positively affected the alpha and beta diversity of Cladocera in local and regional scales. The beta diversity was higher in the Brazilian National Park than in the Formosa Instruction Field. Thus, our findings suggest that aquatic macrophytes displayed a high relative importance for cladoceran species in the wetland studied due to an increase in habitat diversity.
Data availability
The data that support the findings of this study might be found in Sousa (2012) and Sousa et al. (2014).
Acknowledgements
This study received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through a grant to the first author during his Master degree in the Post-Graduate Ecology Program of the Universidade de Brasília (UnB). The authors thank the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) for financial support (Award number 193.000.415/2008), the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for support in the Brasília National Park, the Brazilian Army for its great assistance during the work in the Formosa Instructional Field. We are grateful to colleagues from Grupo de Estudos de Ecossistemas Aquáticos (GEEA) involved in field and laboratory works, in particular to Elisa Alvim and Bárbara Medeiros Fonseca.
Cite as:
Sousa, F.D.R. et al. Environmental heterogeneity in wetlands increases alpha and beta diversity of cladocerans (Crustacea, Branchiopoda) at local and regional scale. Acta Limnologica Brasiliensia, 2025, vol. 37, e101. https://doi.org/10.1590/S2179-975X2624
References
Agostinho
A.A.
Thomaz
S.M.
Gomes
L.C.
Baltar
S.L.S.M.A.
2007
Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil)
Aquat. Ecol.
41
4
611
619
http://doi.org/10.1007/s10452-007-9122-2
Agostinho, A.A., Thomaz, S.M., Gomes, L.C., & Baltar, S.L.S.M.A., 2007. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat. Ecol. 41(4), 611-619. http://doi.org/10.1007/s10452-007-9122-2.
Anderson
M.J.
Ellingsen
K.E.
McArdle
B.H.
2006
Multivariate dispersion as a measure of beta diversity
Ecol. Lett.
9
6
683
693
http://doi.org/10.1111/j.1461-0248.2006.00926.x
Anderson, M.J., Ellingsen, K.E., & McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9(6), 683-693. http://doi.org/10.1111/j.1461-0248.2006.00926.x.
American Public Healht Association
APHA
2005
Standard methods for examination of water and wastewater
21.
Washington
American Public Healht Association
American Public Healht Association – APHA, 2005. Standard methods for examination of water and wastewater. 21. ed. Washington: American Public Healht Association.
Boix
D.
Gascón
S.
Sala
J.
Badosa
A.
Brucet
S.
López-Flores
R.
Martinoy
M.
Gifre
J.
Quintana
X.D.
2008
Patterns of composition and species richness crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies
Hydrobiologia
597
1
53
69
http://doi.org/10.1007/s10750-007-9221-z
Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López-Flores, R., Martinoy, M., Gifre, J., & Quintana, X.D., 2008. Patterns of composition and species richness crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597(1), 53-69. http://doi.org/10.1007/s10750-007-9221-z.
Braghin
L.S.M.
Simões
N.R.
Bonecker
C.C.
2016
Hierarchical effects of local factors on zooplankton species diversity
Inland Waters
6
4
645
654
http://doi.org/10.1080/IW-6.4.919
Braghin, L.S.M., Simões, N.R., & Bonecker, C.C., 2016. Hierarchical effects of local factors on zooplankton species diversity. Inland Waters 6(4), 645-654. http://doi.org/10.1080/IW-6.4.919.
Buosi
P.R.B.
Pauleto
G.M.
Lansac-Tôha
F.A.
Velho
L.F.M.
2011
Ciliate community associated with aquatic macrophyte roots: effects of nutrient enrichment on the community composition and species richness
Eur. J. Protistol.
47
2
86
102
21353502
http://doi.org/10.1016/j.ejop.2011.02.001
Buosi, P.R.B., Pauleto, G.M., Lansac-Tôha, F.A., & Velho, L.F.M., 2011. Ciliate community associated with aquatic macrophyte roots: effects of nutrient enrichment on the community composition and species richness. Eur. J. Protistol. 47(2), 86-102. PMid:21353502. http://doi.org/10.1016/j.ejop.2011.02.001.
Burks
R.L.
Jeppesen
E.
Lodge
D.M.
2002
Littoral zone structures as Daphnia refugia against fish predators
Limnol. Oceanogr.
46
2
230
237
http://doi.org/10.4319/lo.2001.46.2.0230
Burks, R.L., Jeppesen, E., & Lodge, D.M., 2002. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr. 46(2), 230-237. http://doi.org/10.4319/lo.2001.46.2.0230.
Castilho-Noll
M.S.M.
Câmara
C.F.
Chicone
M.F.
Shibata
E.H.
2010
Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil
Biota Neotrop.
10
1
21
30
http://doi.org/10.1590/S1676-06032010000100001
Castilho-Noll, M.S.M., Câmara, C.F., Chicone, M.F., & Shibata, E.H., 2010. Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotrop. 10(1), 21-30. http://doi.org/10.1590/S1676-06032010000100001.
Céréghino
R.
Biggs
J.
Oertli
B.
Declerck
S.
2008
The ecology of European ponds: defining the characteristics of a neglected freshwater habitat
Hydrobiologia
597
1
1
6
http://doi.org/10.1007/s10750-007-9225-8
Céréghino, R., Biggs, J., Oertli, B., & Declerck, S., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1), 1-6. http://doi.org/10.1007/s10750-007-9225-8.
Choi
J.Y.
Jeong
K.S.
La
G.H.
Joo
G.J.
2014
Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland
Knowl. Manag. Aquat. Ecosyst.
414
414
1
10
http://doi.org/10.1051/kmae/2014023
Choi, J.Y., Jeong, K.S., La, G.H., & Joo, G.J., 2014. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquat. Ecosyst. 414(414), 1-10. http://doi.org/10.1051/kmae/2014023.
Cronk
J.K.
Fennessy
M.S.
2001
Wetland plants: biology and ecology
London
Lewis
Cronk, J.K., & Fennessy, M.S., 2001. Wetland plants: biology and ecology, London: Lewis.
Deosti
S.
de Fátima Bomfim
F.
Lansac-Tôha
F.M.
Quirino
B.A.
Bonecker
C.C.
Lansac-Tôha
F.A.
2021
Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river
Hydrobiologia
848
7
1475
1490
http://doi.org/10.1007/s10750-021-04527-8
Deosti, S., de Fátima Bomfim, F., Lansac-Tôha, F.M., Quirino, B.A., Bonecker, C.C., & Lansac-Tôha, F.A., 2021. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848(7), 1475-1490. http://doi.org/10.1007/s10750-021-04527-8.
Elmoor-Loureiro
L.M.A.
2007
Phytophilous cladocerans (Crustacea, Anomopoda and Ctenopoda) from Paranã River Valley, Goiás, Brazil
Rev. Bras. Zool.
24
2
344
352
http://doi.org/10.1590/S0101-81752007000200012
Elmoor-Loureiro, L.M.A., 2007. Phytophilous cladocerans (Crustacea, Anomopoda and Ctenopoda) from Paranã River Valley, Goiás, Brazil. Rev. Bras. Zool. 24(2), 344-352. http://doi.org/10.1590/S0101-81752007000200012.
Espinosa-Rodríguez
C.A.
Sarma
S.S.S.
Nandini
S.
2021
Zooplankton community changes in relation to different macrophyte species: effects of Egeria densa removal
Ecohydrol. Hydrobiol.
21
1
153
163
http://doi.org/10.1016/j.ecohyd.2020.08.007
Espinosa-Rodríguez, C.A., Sarma, S.S.S., & Nandini, S., 2021. Zooplankton community changes in relation to different macrophyte species: effects of Egeria densa removal. Ecohydrol. Hydrobiol. 21(1), 153-163. http://doi.org/10.1016/j.ecohyd.2020.08.007.
Fonseca
B.M.
Mendonça-Galvão
L.
2014
Pristine aquatic systems in a long term ecological research (LTER) site of the Brazilian Cerrado
Environ. Monit. Assess.
186
12
8683
8695
25200993
http://doi.org/10.1007/s10661-014-4035-8
Fonseca, B.M., & Mendonça-Galvão, L., 2014. Pristine aquatic systems in a long term ecological research (LTER) site of the Brazilian Cerrado. Environ. Monit. Assess. 186(12), 8683-8695. PMid:25200993. http://doi.org/10.1007/s10661-014-4035-8.
Fonseca
B.M.
Mendonça-Galvão
L.
Sousa
F.D.R.
Elmoor-Loureiro
L.M.A.
Gomes-e-Souza
M.B.
Pinto
R.L.
Petracco
P.
Oliveira
R.C.
Jesus Lima
E.
2018
Biodiversity in pristine wetlands of Central Brazil: a multi-taxonomic approach
Wetlands
38
1
145
156
http://doi.org/10.1007/s13157-017-0964-7
Fonseca, B.M., Mendonça-Galvão, L., Sousa, F.D.R., Elmoor-Loureiro, L.M.A., Gomes-e-Souza, M.B., Pinto, R.L., Petracco, P., Oliveira, R.C., & Jesus Lima, E., 2018. Biodiversity in pristine wetlands of Central Brazil: a multi-taxonomic approach. Wetlands 38(1), 145-156. http://doi.org/10.1007/s13157-017-0964-7.
Forró
L.
Korovichinsky
N.M.
Kotov
A.A.
Petrusek
A.
2008
Global diversity of cladocerans (Cladocera; Crustacea) in freshwater
Hydrobiologia
595
1
177
184
http://doi.org/10.1007/s10750-007-9013-5
Forró, L., Korovichinsky, N.M., Kotov, A.A., & Petrusek, A., 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595(1), 177-184. http://doi.org/10.1007/s10750-007-9013-5.
Gebrehiwot
M.
Kifle
D.
Triest
L.
2017
Emergent macrophytes support zooplankton in a shallow tropical lake: a basis for wetland conservation
Environ. Manage.
60
6
1127
1138
28887591
http://doi.org/10.1007/s00267-017-0935-z
Gebrehiwot, M., Kifle, D., & Triest, L., 2017. Emergent macrophytes support zooplankton in a shallow tropical lake: a basis for wetland conservation. Environ. Manage. 60(6), 1127-1138. PMid:28887591. http://doi.org/10.1007/s00267-017-0935-z.
Geralds
A.M.
Boavida
M.J.
2004
Do littoral macrophytes influence crustacean zooplankton distribution?
Limnetica
23
1
57
64
http://doi.org/10.23818/limn.23.05
Geralds, A.M., & Boavida, M.J., 2004. Do littoral macrophytes influence crustacean zooplankton distribution? Limnetica 23(1), 57-64. http://doi.org/10.23818/limn.23.05.
Gledhill
D.G.
James
P.
Davies
D.H.
2008
Pond density as a determinant of aquatic species richness in an urban landscape
Landsc. Ecol.
23
10
1219
1230
http://doi.org/10.1007/s10980-008-9292-x
Gledhill, D.G., James, P., & Davies, D.H., 2008. Pond density as a determinant of aquatic species richness in an urban landscape. Landsc. Ecol. 23(10), 1219-1230. http://doi.org/10.1007/s10980-008-9292-x.
Hann
B.J.
Turner
M.A.
2000
Littoral microcrustaceans in Lake 302s in the Experimental lakes area of Canada: acidification and recovery
Freshw. Biol.
43
1
133
146
http://doi.org/10.1046/j.1365-2427.2000.00528.x
Hann, B.J., & Turner, M.A., 2000. Littoral microcrustaceans in Lake 302s in the Experimental lakes area of Canada: acidification and recovery. Freshw. Biol. 43(1), 133-146. http://doi.org/10.1046/j.1365-2427.2000.00528.x.
Hansen
J.P.
Wikstrom
S.A.
Axemar
H.
Kautsky
L.
2011
Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity
Aquat. Ecol.
45
1
11
22
http://doi.org/10.1007/s10452-010-9319-7
Hansen, J.P., Wikstrom, S.A., Axemar, H., & Kautsky, L., 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat. Ecol. 45(1), 11-22. http://doi.org/10.1007/s10452-010-9319-7.
Hinojosa-Garro
D.
Mason
C.F.
Underwood
G.J.C.
2010
Influence of macrophyte spatial architecture on periphyton and macroinvertebrate community structure in shallow water bodies under contrasting land management
Fundam. Appl. Limnol.
177
1
19
37
http://doi.org/10.1127/1863-9135/2010/0177-0019
Hinojosa-Garro, D., Mason, C.F., & Underwood, G.J.C., 2010. Influence of macrophyte spatial architecture on periphyton and macroinvertebrate community structure in shallow water bodies under contrasting land management. Fundam. Appl. Limnol. 177(1), 19-37. http://doi.org/10.1127/1863-9135/2010/0177-0019.
Hornung
J.P.
Foote
A.L.
2006
Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands, with implications for waterbird productivity
Wetlands
26
1
1
12
http://doi.org/10.1672/0277-5212(2006)26[1:AIRTFP]2.0.CO;2
Hornung, J.P., & Foote, A.L., 2006. Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands, with implications for waterbird productivity. Wetlands 26(1), 1-12. http://doi.org/10.1672/0277-5212(2006)26[1:AIRTFP]2.0.CO;2.
Kuczyńska-Kippen
N.
Joniak
T.
2016
Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state
Hydrobiologia
774
1
39
51
http://doi.org/10.1007/s10750-015-2595-4
Kuczyńska-Kippen, N., & Joniak, T., 2016. Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774(1), 39-51. http://doi.org/10.1007/s10750-015-2595-4.
Kuczynska-Kippen
N.
2009
The impact of differentiated habitat on crustacean community structure in macrophyte-dominated lakes in the Wielkopolska region, Poland.
Proceedings of the Conference Wuham.
Wuham
Kuczynska-Kippen, N., 2009. The impact of differentiated habitat on crustacean community structure in macrophyte-dominated lakes in the Wielkopolska region, Poland. In: Proceedings of the Conference Wuham. Wuham.
Lucena-Moya
P.
Duggan
I.C.
2011
Macrophyte architecture affects the abundance and diversity of littoral microfauna
Aquat. Ecol.
45
2
279
287
http://doi.org/10.1007/s10452-011-9353-0
Lucena-Moya, P., & Duggan, I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol. 45(2), 279-287. http://doi.org/10.1007/s10452-011-9353-0.
Meerhoff
M.
Iglesias
C.
Mello
F.T.
Clemente
J.M.
Jensen
E.
Lauridsen
T.L.
Jeppesen
E.
2007
Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes
Freshw. Biol.
52
6
1009
1021
http://doi.org/10.1111/j.1365-2427.2007.01748.x
Meerhoff, M., Iglesias, C., Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L., & Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol. 52(6), 1009-1021. http://doi.org/10.1111/j.1365-2427.2007.01748.x.
Munhoz
C.B.R.
Eugênio
C.U.O.
Oliveira
R.C.
2011
Vereda: Guia de Campo.
Brasília
Rede de Sementes do Cerrado
Munhoz, C.B.R., Eugênio, C.U.O., & Oliveira, R.C., 2011. Vereda: Guia de Campo. Brasília: Rede de Sementes do Cerrado.
Nogueira
M.G.
George
D.G.
Jorcin
A.
2003
Estudo do zooplâncton em zonas litorâneas lacustres: um enfoque metodológico.
Henry
R.
Ecótonos na interface dos ecossistemas aquáticos.
São Carlos
Rima
83
128
Nogueira, M.G., George, D.G., & Jorcin, A., 2003. Estudo do zooplâncton em zonas litorâneas lacustres: um enfoque metodológico. In: Henry, R., ed. Ecótonos na interface dos ecossistemas aquáticos. São Carlos: Rima, 83-128.
Padial
A.A.
Thomaz
S.M.
Agostinho
A.A.
2009
Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae.
Hydrobiologia
624
1
161
170
http://doi.org/10.1007/s10750-008-9690-8
Padial, A.A., Thomaz, S.M., & Agostinho, A.A., 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624(1), 161-170. http://doi.org/10.1007/s10750-008-9690-8.
Pelicice
F.M.
Thomaz
S.M.
Agostinho
A.A.
2008
Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes
Neotrop. Ichthyol.
6
4
543
550
http://doi.org/10.1590/S1679-62252008000400001
Pelicice, F.M., Thomaz, S.M., & Agostinho, A.A., 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotrop. Ichthyol. 6(4), 543-550. http://doi.org/10.1590/S1679-62252008000400001.
Pott
V.J.
Pott
A.
2000
Plantas aquáticas do Pantanal.
Brasília
Embrapa
Pott, V.J., & Pott, A., 2000. Plantas aquáticas do Pantanal. Brasília: Embrapa.
Quirino
B.A.
Mello
F.T.
Deosti
S.
Bonecker
C.C.
Cardozo
A.L.P.
Yofukuji
K.Y.
Aleixo
M.H.F.
Fugi
R.
2021
Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes
J. Plankton Res.
43
1
46
60
http://doi.org/10.1093/plankt/fbaa061
Quirino, B.A., Mello, F.T., Deosti, S., Bonecker, C.C., Cardozo, A.L.P., Yofukuji, K.Y., Aleixo, M.H.F., & Fugi, R., 2021. Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. J. Plankton Res. 43(1), 46-60. http://doi.org/10.1093/plankt/fbaa061.
Reid
J.W.
1984
Semiterrestrial meiofauna inhabiting a wet campo in central Brazil, with special reference to the Copepoda (Crustacea)
Hydrobiologia
118
1
95
111
http://doi.org/10.1007/BF00031792
Reid, J.W., 1984. Semiterrestrial meiofauna inhabiting a wet campo in central Brazil, with special reference to the Copepoda (Crustacea). Hydrobiologia 118(1), 95-111. http://doi.org/10.1007/BF00031792.
Reid
J.W.
1987
The cyclopoid copepods of a wet campo marsh in central Brazil
Hydrobiologia
153
2
121
138
http://doi.org/10.1007/BF00006644
Reid, J.W., 1987. The cyclopoid copepods of a wet campo marsh in central Brazil. Hydrobiologia 153(2), 121-138. http://doi.org/10.1007/BF00006644.
Reid
J.W.
1993
The Harpacticoid and cyclopoid copepod fauna in the cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography
Acta Limnol. Bras.
6
56
68
Reid, J.W., 1993. The Harpacticoid and cyclopoid copepod fauna in the cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography. Acta Limnol. Bras. 6, 56-68.
Rennie
M.D.
Jackson
L.J.
2005
The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish
Can. J. Fish. Aquat. Sci.
62
9
2088
2099
http://doi.org/10.1139/f05-123
Rennie, M.D., & Jackson, L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aquat. Sci. 62(9), 2088-2099. http://doi.org/10.1139/f05-123.
Sakuma
H.
Hanazato
T.
2002
Abundance of Chydoridae associated with plant surfaces, water column and bottom sediments in the macrophyte zone of a lake
Verh. Int. Ver. Theor. Angew. Limnol.
28
2
975
979
http://doi.org/10.1080/03680770.2001.11901862
Sakuma, H., & Hanazato, T., 2002. Abundance of Chydoridae associated with plant surfaces, water column and bottom sediments in the macrophyte zone of a lake. Verh. Int. Ver. Theor. Angew. Limnol. 28(2), 975-979. http://doi.org/10.1080/03680770.2001.11901862.
Scheffer
M.
Zimmer
K.
Jepessen
E.
Søndengaard
M.
Butler
M.G.
Hanson
M.A.
Declerck
S.
De Meester
L.
2006
Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds
Oikos
121
1
227
231
http://doi.org/10.1111/j.0030-1299.2006.14145.x
Scheffer, M., Zimmer, K., Jepessen, E., Søndengaard, M., Butler, M.G., Hanson, M.A., Declerck, S., & De Meester, L., 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 121(1), 227-231. http://doi.org/10.1111/j.0030-1299.2006.14145.x.
Schwarzbold
A.
1990
Métodos biológicos aplicados ao estudo do perifíton
Acta Limnol. Bras.
3
545
592
Schwarzbold, A., 1990. Métodos biológicos aplicados ao estudo do perifíton. Acta Limnol. Bras. 3, 545-592.
Shmida
A.
Wilson
M.V.
1985
Biological determinants of species diversity
J. Biogeogr.
12
1
1
20
http://doi.org/10.2307/2845026
Shmida, A., & Wilson, M.V., 1985. Biological determinants of species diversity. J. Biogeogr. 12(1), 1-20. http://doi.org/10.2307/2845026.
Smirnov
N.N.
1992
The Macrothricidae of the world
Amsterdam
SPB Academic Publishing
Smirnov, N.N., 1992. The Macrothricidae of the world. Amsterdam: SPB Academic Publishing.
Smirnov
N.N.
1996
Cladocera: the chydorinae and sayciinae (Chydoridae) of the world.
Amsterdam
SPB Academic Publishing
Smirnov, N.N., 1996. Cladocera: the chydorinae and sayciinae (Chydoridae) of the world. Amsterdam: SPB Academic Publishing.
Sousa
F.D.R.
Elmoor-Loureiro
L.M.A.
2008
Phytopilous cladocerans (Crustacea, Branchiopoda) of the Parque Nacional das Emas, State of Goiás
Biota Neotrop.
8
159
166
http://doi.org/10.1590/S1676-06032008000100019
Sousa, F.D.R., & Elmoor-Loureiro, L.M.A., 2008. Phytopilous cladocerans (Crustacea, Branchiopoda) of the Parque Nacional das Emas, State of Goiás. Biota Neotrop. 8, 159-166. http://doi.org/10.1590/S1676-06032008000100019.
Sousa
F.D.R.
2012
Diversidade da fauna de Cladocera (Crustacea, Branchiopoda) associada a‘ macrófitas em áreas úmidas naturais do Cerrado do Brasil Central
Master’s thesis in Ecology
Brasília
University of Brasília
Sousa, F.D.R., 2012. Diversidade da fauna de Cladocera (Crustacea, Branchiopoda) associada a‘ macrófitas em áreas úmidas naturais do Cerrado do Brasil Central [Master’s thesis in Ecology]. Brasília: University of Brasília.
Sousa
F.D.R.
Elmoor-Loureiro
L.M.A.
Souza
M.B.G.
2009
A contribution to the fauna of Cladocera (Branchiopoda) from Ceará state, Brazil
Nauplius
17
101
105
Sousa, F.D.R., Elmoor-Loureiro, L.M.A., & Souza, M.B.G., 2009. A contribution to the fauna of Cladocera (Branchiopoda) from Ceará state, Brazil. Nauplius 17, 101-105.
Sousa
F.D.R.
Elmoor-Loureiro
L.M.A.
Mendonça-Galvão
L.
Pujol-Luz
J.R.
2014
Evaluation of a new sampling method for assessing Cladocera richness (Crustacea, Branchiopoda) in macrophyte-rich wetlands
Ann. Limnol.
50
2
143
153
http://doi.org/10.1051/limn/2014007
Sousa, F.D.R., Elmoor-Loureiro, L.M.A., Mendonça-Galvão, L., & Pujol-Luz, J.R., 2014. Evaluation of a new sampling method for assessing Cladocera richness (Crustacea, Branchiopoda) in macrophyte-rich wetlands. Ann. Limnol. 50(2), 143-153. http://doi.org/10.1051/limn/2014007.
Thomaz
S.M.
Cunha
E.R.
2010
The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity
Acta Limnol. Bras.
22
2
218
236
http://doi.org/10.4322/actalb.02202011
Thomaz, S.M., & Cunha, E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 22(2), 218-236. http://doi.org/10.4322/actalb.02202011.
Thomaz
S.M.
Dibble
E.D.
Evangelista
L.R.
Higuti
J.
Bini
L.M.
2008
Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons
Freshw. Biol.
53
2
358
367
http://doi.org/10.1111/j.1365-2427.2007.01898.x
Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J., & Bini, L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol. 53(2), 358-367. http://doi.org/10.1111/j.1365-2427.2007.01898.x.
Trochine
C.
Modenutti
B.E.
Balseiro
E.G.
2009
Chemical signals and habitat selection by three zooplankters in Andean Patagonian ponds
Freshw. Biol.
54
3
480
494
http://doi.org/10.1111/j.1365-2427.2008.02125.x
Trochine, C., Modenutti, B.E., & Balseiro, E.G., 2009. Chemical signals and habitat selection by three zooplankters in Andean Patagonian ponds. Freshw. Biol. 54(3), 480-494. http://doi.org/10.1111/j.1365-2427.2008.02125.x.
Vieira
L.C.G.
Bini
L.M.
Velho
L.F.M.
Mazão
G.R.
2007
Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae
Fundam. Appl. Limnol.
170
1
77
85
http://doi.org/10.1127/1863-9135/2007/0170-0077
Vieira, L.C.G., Bini, L.M., Velho, L.F.M., & Mazão, G.R., 2007. Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fundam. Appl. Limnol. 170(1), 77-85. http://doi.org/10.1127/1863-9135/2007/0170-0077.
Walseng
B.
Hessen
D.O.
Halvorsen
G.
Schartau
A.K.
2006
Major contribution from littoral crustaceans to zooplankton species richness in lakes
Limnol. Oceanogr.
51
6
2600
2606
http://doi.org/10.4319/lo.2006.51.6.2600
Walseng, B., Hessen, D.O., Halvorsen, G., & Schartau, A.K., 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol. Oceanogr. 51(6), 2600-2606. http://doi.org/10.4319/lo.2006.51.6.2600.
Whiteside
M.C.
Harmsworth
R.V.
1967
Species diversity in Chydoridae (Cladocera) communities
Ecology
48
4
664
667
http://doi.org/10.2307/1936514
Whiteside, M.C., & Harmsworth, R.V., 1967. Species diversity in Chydoridae (Cladocera) communities. Ecology 48(4), 664-667. http://doi.org/10.2307/1936514.
Autoria
Francisco Diogo Rocha Sousa **e-mail: fdiogo.rs@gmail.com
Laboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, BrasilUniversidade Federal de JataíBrasilJataí, GO, BrasilLaboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
Laboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, BrasilUniversidade Federal de JataíBrasilJataí, GO, BrasilLaboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
Laboratório de Ecologia, Universidade Estadual do Sudoeste da Bahia – UESB, Campus Vitória da Conquista, Vitória da Conquista, BA, BrasilUniversidade Estadual do Sudoeste da BahiaBrasilVitória da Conquista, BA, BrasilLaboratório de Ecologia, Universidade Estadual do Sudoeste da Bahia – UESB, Campus Vitória da Conquista, Vitória da Conquista, BA, Brasil
Programa de Pós-graduação em Ciências e Tecnologias Ambientais, Universidade Federal do Sul da Bahia – UFSB, Praça José Bastos, Centro, CEP 45600-923, Itabuna, BA, BrasilUniversidade Federal do Sul da BahiaBrasilItabuna, BA, BrasilPrograma de Pós-graduação em Ciências e Tecnologias Ambientais, Universidade Federal do Sul da Bahia – UFSB, Praça José Bastos, Centro, CEP 45600-923, Itabuna, BA, Brasil
Cláudia Bonecker, Gilmar Perbiche Neves, Maria Stela Maioli Castilho Noll
SCIMAGO INSTITUTIONS RANKINGS
Laboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, BrasilUniversidade Federal de JataíBrasilJataí, GO, BrasilLaboratório de Taxonomia Animal, Instituto de Biociências, Universidade Federal de Jataí – UFJ, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
Laboratório de Ecologia, Universidade Estadual do Sudoeste da Bahia – UESB, Campus Vitória da Conquista, Vitória da Conquista, BA, BrasilUniversidade Estadual do Sudoeste da BahiaBrasilVitória da Conquista, BA, BrasilLaboratório de Ecologia, Universidade Estadual do Sudoeste da Bahia – UESB, Campus Vitória da Conquista, Vitória da Conquista, BA, Brasil
Programa de Pós-graduação em Ciências e Tecnologias Ambientais, Universidade Federal do Sul da Bahia – UFSB, Praça José Bastos, Centro, CEP 45600-923, Itabuna, BA, BrasilUniversidade Federal do Sul da BahiaBrasilItabuna, BA, BrasilPrograma de Pós-graduação em Ciências e Tecnologias Ambientais, Universidade Federal do Sul da Bahia – UFSB, Praça José Bastos, Centro, CEP 45600-923, Itabuna, BA, Brasil
Figure 1
(a) Sample-based rarefaction analysis to cladoceran for the wetlands studied. (b) Sample-based rarefaction analysis to macrophytes for the wetlands studied.
Figure 3
Cladoceran species richness in relation to macrophyte species richness in regional scale. BNP = Brasília National Park; FIF = Formosa Instruction Field.
Figure 4
Principal coordinate analysis of the centroid distance resulting from the betadisper function. BNP = Brasília National Park; FIF = Formosa Instruction Field.
Table 1
Mean, standard deviation and variation coefficient for the physicochemical water parameters in wetlands of the Brasília National Park and Formosa Instruction Field.
Table 2
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.
Table 3
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.
imageFigure 1
(a) Sample-based rarefaction analysis to cladoceran for the wetlands studied. (b) Sample-based rarefaction analysis to macrophytes for the wetlands studied.
open_in_new
imageFigure 2
Cladoceran species richness in relation to macrophyte species richness in local scale.
open_in_new
imageFigure 3
Cladoceran species richness in relation to macrophyte species richness in regional scale. BNP = Brasília National Park; FIF = Formosa Instruction Field.
open_in_new
imageFigure 4
Principal coordinate analysis of the centroid distance resulting from the betadisper function. BNP = Brasília National Park; FIF = Formosa Instruction Field.
open_in_new
table_chartTable 1
Mean, standard deviation and variation coefficient for the physicochemical water parameters in wetlands of the Brasília National Park and Formosa Instruction Field.
Wetland
HE
EX
PM
CBI
CBII
GR
(N=10)
(N=10)
(N=6)
(N=8)
(N=10)
(N=8)
Water temperature (ºC)
25.50±3.09 12.11%
24.34±1.78 7.30%
24.22±2.95 12.17%
24.81±1.06 4.28%
22.33±3.72 16.68%
27.11±4.42 16.30%
Electrical conductivity (µS cm-1)
4.93±2.05 41.60%
4.78±1.24 25.86%
7.75±2.87 36.89%
5.74±1.58 27.51%
5.07±0.95 18.78%
4.88±2.36 48.48%
Dissolved oxygen (mg L-1)
4.88±0.75 15.45%
5.51±0.99 17.89%
4.97±0.55 11.13%
4.73±0.82 17.25%
3.73±0.74 19.83%
4.79±0.90 18.73%
pH
5.11±0.21 4.08%
5.50±0.44 7.97%
5.57±0.41 7.52%
5.02±0.11 10.84%
5.39±0.27 5.07%
5.72±0.49 8.58%
Inorganic nitrogen (µg L-1)
96.27±48.74 50.63%
91.91±43.94 47.81%
87.15±25.39 29.13%
127.68±47.49 37.20%
174.88±87.18 49.85%
110.71±29.30 26.43%
Total nitrogen (µg L-1)
178.88±106.72 59.60%
197.40±108.57 54.85%
164.47±119.58 72.66%
123.88±56.73 45.80%
173.35±86.94 50.15%
117.35±32.72 27.88%
Soluble reactive phosphorus (µg L-1)
1.58±0.95 60.18%
5.53±10.13 183.5%
1.07±0.12 11.35%
4.03±2.58 64.04%
2.96±1.67 56.42%
2.99±1.94 65.06%
table_chartTable 2
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.
R-Mantel
p-value
CBI
0.39
0.024
CBII
0.08
0.321
EX
0.35
0.031
GR
0.05
0.372
HE
0.35
0.05
PM
-0.57
0.03
table_chartTable 3
Mantel test between distance compositional matrix of macrophytes and distance compositional matrix of Cladocera. Both matrices were computed based on Jaccard dissimilarity.